RC 造 4 層縮小架構の振動台実験による補修補強建物の性能評価

その1 実験計画の概要と常時微動測定による補修補強効果の確認

			正会員	〇三浦	耕太*1	正会員	Alex Shegay*2	正会員	参川 朗* ³
			同	藤田	起章*4	同	前田 匡樹* ³	同	穴吹 拓也*1
補修	耐震補強	振動台実験	同	増田	安彦*1	同	栗田 康平*1	同	関 松太郎*5
耐震壁	常時微動	固有振動数							

1. はじめに

地震被害を受けた建物を補修補強によって復旧する際 には、補修補強後の建物の性能の回復度合いを定量的に 把握する必要がある。RC 造建物について、日本建築防災 協会の被災度区分判定基準
いには、補修した部材の性能の 回復係数の値が示されているが、実験データは十分とは 言えず、回復係数は安全側の値として定められている。 また、補修した架構全体の性能を実験的に検証した例は ほとんど見られない。一方、RC 造建物の補強に用いられ る耐震補強壁の性能については、これまでも実験等によ って検証が行われているが²⁾、面外方向の挙動を含めて、 補強壁を含む架構の性能を総合的に検証した例は少ない。

そこで、本研究では、補修補強した建物の性能を明ら かにすることを目的として、2019年度に実施した振動台 実験³⁾で損傷した RC 造 4 層建物縮小試験体を補修補強し、 再度振動台実験を行った。その1 では、実験計画及び常 時微動測定による補修補強効果の確認結果、その2 では 長辺方向(X 方向)の実験結果の概要、その3 では補修 による架構の性能回復の検討結果、その4 では、短辺方 向(Y 方向)に設置した鋳鉄製ブロック壁(以下補強壁) の挙動に関する検討結果を示す。

2. 試験体の補修補強計画

2.1 新設試験体の振動台実験における損傷状況

2019 年度に実施した振動台実験の試験体(以下新設試 験体)は、図1に示すような1/4スケールのRC造4層連 層耐震壁付ラーメン建物である。同実験においては、長 辺方向(X 方向)の1 階耐震壁脚部が曲げ破壊し、コン クリートの剥落と主筋の座屈が発生した(写真 1(a))、短 辺方向(Y方向)では、1階及び2階の耐震壁がせん断破 壊した(写真 1(b))。また、各階の梁端及び1階の柱脚に 曲げ降伏ヒンジが発生した(写真 1(c)(d))。

2.2 補修補強方針

X 方向は、一般的に使用されている補修工法によって 性能を回復させる計画とした。Y 方向は RC 壁の一部を撤 去し、補強壁を新設することで性能を回復、向上させる 計画とした。

2.3 各部材の補修補強方法

せん断破壊した Y 方向 1、2 階の RC 壁は撤去し、新た に補強壁と基礎梁を設置した。補強壁の詳細図と写真は その4に示す。その他の部材は、損傷程度に応じて4種 類の方法で補修した。補修補強方法の種別を表 1 に、各 部材に適用した補修補強方法を図1の軸組図に赤字で示 す。また、方法1~3による補修の様子を写真2に示す。

Shake-table test of a 4-story repaired and retrofitted RC structure to evaluate seismic capacity (Part1 Motivation of experiment and confirmation of repair and retrofit effect by microtremor observation)

写真 1 新設試験体の振動台実験後の損傷状況

MIURA Kota, Alex SHEGAY, MIKAWA Akira, FUJITA Kisho, MAEDA Masaki, ANABUKI Takuya, MASUDA Yasuhiko, KURITA Kohei and SEKI Matsutaro

-463-

3. 常時微動測定による補修補強効果の確認

3.1 測定計画

各部材の補修補強による剛性の回復効果を明らかにす るため、補修補強工事の各段階(第1回:工事開始前、 第2回:X方向1階壁補修、Y方向1.2階壁撤去後、第3 回:柱・壁のひび割れ・剥落補修後、第4回:梁・スラ ブのひび割れ・剥落補修後、第5回:Y方向1,2 階補強壁 設置後、第6回:振動台に移動、基礎固定後)において 常時微動測定を行った。工事中の測定は、基礎を固定し ない状態で行った。1階及びR階の床に加速度計を設置し て 10 分間の計測を行い、R 階/1 階の伝達関数のピークか ら、試験体の1次固有振動数を算出した。

3.2 測定結果

試験体の 1 次固有振動数の推移を図 2 に示す。図中に は、参考として、新設試験体の実験前の固有振動数を合 わせて示している。尚、実験前の固有振動数は、試験体 に付加錘が設置されている状態での測定値 fo'を、(1)式を 用いて錘が無い状態(工事中と同じ状態)の値 fo に換算 している。

 $f_0 = \sqrt{(m+M)/m} \times f_0'$

m:試験体重量、M:付加錘重量

(1)

固有振動数は、X 方向の 1 階壁の補修(鉄筋交換とコ ンクリートの打替え)により 15%増加した。柱・壁のひ び割れ・剥落補修では、X 方向で 7%、Y 方向で 18% 増加 した。梁・スラブのひび割れ・剥落補修では、X 方向で 48%、Y 方向で 56%の増加が見られ、補修による剛性回復 効果が最も大きかった。Y 方向の 1,2 階の補強壁の設置で は、59%の増加が見られた。実験前と比較すると、工事開 始前に X 方向で 41%、Y 方向で 43%まで低下した固有振 動数が、X 方向では 87% (剛性では 75%) まで回復し、Y 方向では148% (剛性では219%) に向上した。

4. 加振計画

入力地震波は、2019 年度の新設試験体の実験と同一 (告示の第2種地盤の応答スペクトルに適合する人工地 震波)とした。加振波の詳細については文献 3)を参照さ れたい。水平2方向(一部1方向)の同時加振とし、各 加振(Run)の入力倍率は、X 方向では新設試験体と応答 変形が同程度となるように設定した。加振倍率の一覧を 表2に示す。Y方向の加振計画の詳細はその4に示す。

5. まとめ

2019 年度に実施した振動台実験で損傷した RC 造 4 層 建物縮小試験体を補修補強し、再度加振を行う実験の計 画を示した。補修補強工事の各段階において常時微動測 定を行い、補修補強による剛性回復の効果を確認した。

参考文献

- 1) 日本建築防災協会:震災建築物の被災度区分判定基準及び復旧技術指針, 2016.3
- 穴吹拓也,他:鋳鉄製ブロックを用いた耐震補強工法「3Q-Wall[®]」の開発, 2) 大林組技術研究所報, No.81, 2017.12
- 前田匡樹,他:連層耐震壁を有する RC 造 4 層建物縮小試験体の振動台 3) 実験による被災度評価と応答予測 その1~その5,日本建築学会学術講 演梗概集,構造IV, pp.441-450, 2020.9

*1 大林組 *2 東京工業大学 *3 東北大学

- *4大林組(元東北大学)
- *5建築研究所

*1Obayashi	Corporation	*2Tokyo	Institute	of Techno	ology *3	Tohoku	University
* ⁴ Obayashi	Corporation	(Former	oraduate	student o	f Tohoki	ı Univ)	

*5 Building Research Institute

表1 補修補強方法の種別

方法	損傷状態	補修内容				
1	剥落なし	エポキシ樹脂注入によるひび割れ補修				
2-A	軽微な剥落 (鉄筋の露出無し)	エポキシ樹脂注入によるひび割れ補修 ポリマーセメントモルタルによる剥落補修				
2-B	大きな剥落 (鉄筋が露出)	エポキシ樹脂注入によるひび割れ補修 エポキシ樹脂モルタルによる剥落補修				
3	顕著な剥落 鉄筋の座屈	エポキシ樹脂注入によるひび割れ補修 座屈した鉄筋の交換 コンクリートの一部撤去と再打設				
4	せん断破壊	RC壁の撤去 鋳鉄製補強壁と基礎梁の新設				
エポキシ樹脂注入 補修後 補修方法1 補修商 補修方法1 3階耐震壁						
補修育		クリート一部撤去 <u>鉄筋の交換</u>				

補修方法3 1階X方向耐震壁

写真2 各方法による補修状況

※基礎が固定されていないことによる固有振動数低下の影響を含む

図2 補修工事の各段階における試験体の固有振動数

表2 各加振における入力倍率

Dun	入力	倍率	新設試験体入力倍率(2019)		
Kull	X方向	Y方向	X方向	Y方向	
1	20%	20%	20%	20%	
2	80%	100%	80%	60%	
3	120%	120%	160%	100%	
4	180%	0%	240%	150%	
4-2	240%	0%	/	/	
5	260%	0%	260%	170%	
6	220%	70%	130%	100%	
7	280%	100%	220%	120%	
8	300%	130%	220%	0%	
9	300%	150%	260%	0%	
10	0%	200%			