Development of the Seismic performance evaluation methodology

Evaluation of the amount of crack length and width

Public needs to seismic performance

I want to continue to live in my own house after earthquake disaster... (inhabitant)

Even if the severe earthquake happens, we want to avoid the damage of the building and (administrator) continue business.

Need of seismic performance evaluation of buildings based on damage and repair costs

Performance evaluation of earthquake resistant R/C buildings

Serviceability limit state	Crack width <0.2mm
Repair is not need. Continuously available.	
Repairability limit state 1	Crack width <1.0mm
Need to easy repair	
Repairability limit state 2	Crack width <2.0mm
Need to extensive repair	
Safety limit state	Crack width >2.0mm
Keep axial force at EQ.	
Difference of collapse type of building	

Procedure of damage evaluation of Buildings

Damage of buildings which differ from Collapse type

crack 100 100 Total 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.0 0.0 Seismic performance index

len 200

crack

Total

Service

However, damages of these frames are different.

200